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: 1. INTRODUCTION

N " There are three basic versions of the finite element méthod, called the h, p
and h-p versions. They are essentially characterized by the way in which the finite
element meshes and polynomial degree of elements are chosen. They differ in computer
implementation (program architecture) and mathematical analysis. This paper is
concerned mainly with the question of how the meshes and polynomial degree of the
elements affect the accuracy of finite element solutions. Our approach is to fix
certain parameters or their relation and increase the number of degrees of freedom so
that the finite element solutions converge to the exact solution, Such a systematic
increase of the number of degrees of freedom is called extension because it can be
interpreted as a systematic extension of finite element spaces. <l

A, S

When emphasis is on analysis of accuracy and not aspects of implementation, then
we speak about the h, p and h-p extensions rather than versions. Understanding
the various extension processes and their numerical performance is essential for
resolving certain basic questions of implementation.

X The h-extension is the most commonly used approach to error reduction., The
polynomial degree (p) of the elements is fixed and the errors of approximation are
reduced through mesh refinement. The size of the elements is usually denoted by

) h, hence the name: h-extension. Typically, the polynomial degree of elements is

K low, usually p=1 or p = 2,

In the p-extension the mesh is fixed and convergence is achieved by increasing
[ the polynomial degree of elements either uniformly or selectively.

The h-p extension combines the h- and p-versions, i.e., reduction of error is
achieved by mesh refinement and concurrent choices in the polynomial degree of
elements.
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The parameters that charactcrize extension processes can be chosen either a
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priori, on the basis of certain characteristics of the exact solution, known a
priori, or a posteriori, through utilization of some feedback procedure in which case
the parameters of the extension process depend on previously computed data. \

The analysis and especially optimization of extension processes (selection of

s optimal meshes, polynomial degree distributions, etc.) presented herein indicate the
> potential of alternative approaches and provide a basis for decisions concerning 1
- implementation. 1
- In order to keep the essential points in focus, we consider only two simple
model problems based on the displacement formulation and two measures of error: The
- error measured in energy norm and the error of stress components computed at specific
- points.
-
»

Specifically, we denote the exact and finite element solutions respectively by
ug and &. The error is then e = up - @i. The energy norm of e 1is denoted by

“ lelE and is defined as the square root of the energy of thé error:
2 " !
3 ety = (W(e)?2.
The relative error in energy norm is denoted by lelER and 1s defined as:
i lelE
- el = Tour °
N OE

The error in stress components at some poin Xg 1s defined as

v 0 ~
o - -
- eg5(xg) = logy(xg) °1j(xo)|
C4
’ where og (xo) and 31j(x0) respectively denote the exact and computed components
- of the stTess tensor at™ point Xg. The relative error in stresses is defined by:
A R leg(xo)]
4 ey %) = o
E: log3 (x|
- The one dimensional problem can be analyzed theoretically and experimentally in great
. detail. One dimensional problems can also serve as models for higher dimensional
:Z problems which are vastly more complicated and less well understood. Presentation of
. details and derivation of formulas quoted herein is beyond the scope of this paper.
For the proofs of theorems in one dimension, we refer to [1], [2]. For further
7] details and application to two dimensions, we refer to [3], [4], ([S]), [6], [8].
; .
. 2. MODEL PROBLEMS
rl
3 : 2.1. Model Problems
- We consider the following simple model problems:
- A
Ca
\
{
N
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3
-u"(x) = f£(x), x €1 = (0,1) (2.1)
u(0) = u(l) = 0 (2.2)
and exact solutions of the form:
ug(x) = (x+)% = €% - x[(1+£)® - €°] (2.3)
with a > Ué and £ > 0. The solutions minimize the potential energy defined as:
m(u) = W(u) - 2 i fu dx

1
where W(u) = I (u’)2 dx.
0

The finite element solutions are characterized by the éesb and p-
distributions. Specifically we denote- the mesh by the partition:

A -1

=3 = A A oo

where xs,x?,---,xa(A) are the mesh (or nodal) points. The j':h fin{te element {is

. = (D 8 th
denoted by: Ij+l = (xj,xj+1). The size of the j element is defined by hj

= x - x8_,. The size of the largest element is denoted h(A). The set of all

fun%tions w, defined on I that satisfy the following conditions:
(a) W(w) < =,
(b) the boundary conditions (2.2),

(¢) on IA w 1is a polynomial of degree p?,

]
2(2) A A A

is denoted by S (8) where p(a) = (pl,pz,...,pM(A)) is the vector of p-
p(8)

distribution., § (A) 1s called the finite element space. The number of degrees

of freedom is denoted by N(A): =

p(a) M(8)
N(A) = dim S (a) = } Py = L
. j=1
~ P8
The finite element method consists of finding u € S which minimizes w(u) over
p(8) .
S (A). The extension processes are characterized by the selection of sequences

of & and p(a).




M A A o IR RO AL Y o B MR Al

2.2. The Two-Dimensional Model Problem

We shall consider the model problem of Fig. 2.1 assuming plane strain conditions
and using the elastic parameters E =1, v = 0,3. The tractions on the boundary are
chosen so that the exact solution is known and the singularity at the crack tip is
characterized by the stress intensity factors K; = Kiy = 1,

The solution of Model Problem 1 has certain similarities with the solution of
Model Problem 2 from the point of view of numerical performance when E = 0 and 0.5

<a<l,

3. THE PERFORMANCE OF THE FINITE ELEMENT METHOD IN ONE
DIMENSION WITH RESPECT TO THE ENERGY NORM MEASURE

We now demonstrate how the performance of the various extension processes
depends on the mesh and the polynomial degree of elements. The principal mathematical
tool is asymptotic analysis which provides information on how the error depends on
the mumber of degress of freedom when only one parameter is being varied, and on
certain essential characteristics of the exact solution provided that the number of
degrees of freedom is large. We shall consider Model Problem 1 and choose the
parameters £ and a so as to represent problems with solutions of various
smoothness (£ = 0, a >1) and £ > 0.

3.1. H-Extensions Based on Uniform Mesh Refinement (& = 0)

In this case M(A) = -E%—s, P 1s fixed. The number of elements fully charac-

terizes the mesh and the error in energy norm for £ = 0 1s estimated as follows:

C(a)
'S
lelER Hiph

(3.1)

where the symbol = means "asymptotically equal”, C(a) 1is a constant independent
of the mesh and the polynomial degree of elements:

p = win(a yﬁ.p) (3.2)
p = 2a-1 (3.3)

and, the number of degrees of freedém 1is given by:
N = Mp-l. (3.4)

Although (3.1) is an asymptotic estimate, it holds even for reasonably low values
of N. In order to demonstrate this, we have computed the value

D = felg, M¥pP. (3.5)

D 1is called the numerical value of C(a). The results for a = 0.7 (and therefore
py=0.2, p=0,4) are shown in Table 3.1. Ilel is shown as "percent relative
error". It is seen that (3.1) holds well also when M(A) 1is small and the error is

{



large. In view of the fact that p 1is twice the value of u, for the same number
of degrees of freedom the higher order elements perform better.

3.2, H-Extensions Based on Nearly Optimal Mesh Refinement (£ = 0)

We once again consider the case £ = 0. In this case the optimal mesh (for
fixed p) 1is asymptotically:

8
5 = @§)° (3.6)
where:
P+,
8 = T e (3.7)
0 a -1

The estimate of error measured in energy norm is given by:

_ /B (B p/l_M-[(Za-l)B-ZP] o op
tel . 3 C(a)-p—‘;(lm) (3625 = TN (3.8a)
provided that
g>B = —B— (3.8b)

a-1

When B < B then the rate of convergence with respect to M decreases. The
reliability of estimate (3.8) for B = BO is shown in Tables 3.2a and 3.2b.

With reference to Tables 3.2a, 3.2b, we note the following observations:

(a) The asymptotic estimate (3.8) is of good quality whem M > 2p. For M <
2p the formula is pessimistic. The reason for this is that (3.8) is based on the
assumption that M + «, Therefore it cannot be expected to give close estimates for
low values of M., In the case M < 2p, analysis based on p-extension rather than
h-extension should be used.

Table 3.3 shows the error for optimal distribution of the nodal points for M =
2 and a = 1,1, It is seen that for small values of p (p = 1,2) the
asymptotically optimal mesh performs very nearly as well as the optimal mesh.

" (b) Whem a is small (strong stress singularity occurs) the optimal refinement
is so strong that roundoff limitations are encountered even when the_computations are
performed in double precision., Table 3.4 shows the values of BO’ B, the

coordinate of the first nodal point for the optimal mesh, x? (opt), and for the mesh

at which the rate of convergence begins to decrease, xe (min), for a = 0.7, M =32,

(c) Overrefinement is more advantageous than underrefinement. If a 1is not
known precisely, then the refinement should be designed for lower bound estimates of
a. Overrefinement increases the value of C in (3.8a) but does not alter the rate
of convergence (N P). The penalty, in terms of increased values of C and
increased values of N for achieving comparable levels of accuracy are shown im

-
- o« e
-



Ay
DSt A

“»
~
"

A
4 ALRAN,

Table 3.5. The mesh refinement is optimal for a = 0.7, the penalty values are
shown for a = 1.1, 1.6, 2.1,

It is seen that the penalty for overrefinement is not small., Underrefinement
also reduces the rate of convergence. Therefore the penalty for underrefinement 1is
still larger. This shows the importance of correct selection of mesh refinement,

3.3. P-Extensions Based on Uniform Meshes (£ = 0)

In this case M(A) < p and the estimate (3.1) holds. The results of
computational experiments are shown in Table 3.6.

On comparing the results on the basis of the number of degrees of freedom (N =
Mp-1), it 1s seen that the best choice is M = 1. Comparing Tables 3.6 and 3.2a it
is evident that h-extensions based on optimal meshes yield better results tham p-
extensions based on uniform meshes. The performance of p-extensions cannot be
improved substantially through optimizing the p-distribution. Table 3.7 shows the
effect of optimal p-distributions for M =2 and a = 0.7, 1l.l.

3.4, H-p Extensions (& = 0)
In this case the meshes and p distributions are optimized concurrently. The

assymptotically optimal mesh is characterized by the following geometric progression
of nodal points:

L = xg(A)_j j =1,2,...,M(a) (3.9)

. D

where:

c = (/Z-1)% (3.10)

The polynomial degrees of elements are assigned as follows:

Py = [s(a)]] (3.11)

where

g(a) = 2(a - yb) (3.12)

and [¢] means: the integral part.

The error estimate is:

a1
tet ., = C(a)[(/Z + 1)?] (a= /28
=g/ ta= 12 )N

= C(a)e , = 1,574, (3.13)

Yo
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The numerical performance of h-p extensions is illustrated in Table 3.8. On
comparing the results with those in Table 3.2a, it 1s seen that the rate of
convergence of the h-p extension is much greater than the rate of convergence of
the h-extension based on asymptotically optimal meshes.

3.5. The h-p Extensiop with Uniform p and Optimal Mesh (§ = 0)
The mesh is the same as in Section 3.4, i.e., with the nodal points defined by

(3.9), (3.10) and we assume that the p-distribution is uniform. In this case the
estimate for s Ca <1 {is:

2
—_:—9 (a-1)N
tet, = C(a);—z—ijl-e',z (3.14)
where, as in (3.13), Y, = 1.574 and:
p = [s(a)]M(a) (3.15)
s(a) = 2(a -1p). (3.16)

The numerical performance of the h-p extension with uniform p 1s shown in Table
3.9. On comparing Table 3.9 with Table 3.8, it is seen that the performance of the
h-p extension with uniform p 1is not substantially different from that of the h-p
extension with optimal p-distribution. The performance can be analyzed also for p-
distributions other than that given in (3.15). When p increases more rapidly than
(3.15), then the rate of convergence diminishes until it reaches the algebraic rate
characteristic of p-extensions. When p 1increases less than (3.15), then the rate
of convergence diminishes because h(A) does not change.

3.6. H-Extensions that Utilize Feedback (& = 0)

In Section 3.2 it was pointed out that the quality of performance of h-
extensions depends on the mesh design. Proper mesh design depends on the exact
solution which generally is not knpown., It is possible to devise feedback procedures
however, that construct meshes which asymptotically perform as well as the optimal
meshes. Such feedback procedures are called adaptive (9], [10}, (11}, [12].

Tables 3.10a, 3.10b show the results of numeiical experiments. The numerical
value D 1is based on a formula for optimal meshes that utilize only nodal point
which can be constructed by successive bisectior. of elements, not all meshes as
considered before, because the feedback procedure uses only such meshes.

3.7. H-p Extensions that Utilize Feedback

It is possible to devise feedback procedures that perform nearly as well as the
optimal h-p extension. Results obtained with such a procedure are shown in Table

P A M R R I I A AL - ¥ *» . - LSSV IR Y LR Y R S C IR
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3.11 (a = 0.7). The meshes were generated by bisection, therefore, D 4s based on
an estimate developed for such meshes only,

3.8. p-Extension Based on Properly Designed Meshes and Feedback (§ = 0)

In this case the mesh is strongly graded toward singular points, on the basis of

(3.9), with . = (V2 - 1)2 = 0.1715 or slightly smaller, say k, = 0.15 and M(A)
is fixed. The polynomial degree of elements is uniformly increased. The error
decrease first exponentially and if p 1is too large, then algebraically, as
explained in Sec-tion 3.5. Feedback is utilized to ensure (through proper selection
of M(A)) that the desired accuracy is reached in the range where the convergence is
exponential,

3.9. Smooth Solutions (& > 0)

We have considered various extension processes when the solution has singular
character. When the solution is smooth, then p-extensions perform especially well
for small M. The error estimates for £ » 0 in (2.3) are as follows:

(a) for £E=0

- C(a)
lelER pZu-l (3.17)
(b) for E> O
l-qz _33
lel, = C(a)( 7 ) p" (3.18)
where:
q = [ -VE (3.19)
Y1+ + /€

In Table 2.1]1 results are presented for a = 0.7 and £€=0, £ =0.01 and E =
0.1l. These results demonstrate that the performance of p-extensions very rapidly
improves with increasing smoothness of the solution.

4, ACCURACY OF STRESS APPROXIMATIONS IN ONE DIMENSION

In one dimension the stress is simply u’(xo). In contrast to the two
dimensional case, the behavior of the finite element solution in our example is
entirely local, therefore we need to consider only the case with one element. The
results of numerical experiments for a = 0.7 and various £ values are shown in
Table 4.1. 1It is seen that the element that contains the singularity (g =0) yields
very poor stress approximations.

When quantities other than the energy are of interest, for example streéses,
then the mesh and p-distribution should be optimal or nearly optimal with respect to
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~:F the purpose of computation. Optimal meshes and p-~distributions depend not only on
:i the purpose of computation but also on the method used for computing the quantities
" of interest. See, for example, [10],[13].

..':'
K
:gz S. PERFORMANCE OF THE FINITE ELEMENT METHOD IN TWO
-.: DIMENSIONS. WITH RESPECT TO THE ENERGY NORM
202

e The theory of two dimensional problems presents more difficulties and is

; therefore less well understood than the theory of one dimensional problems.

AN Nevertheless there are important similarities which make it possible to gain valuable
o insight from the analysis of one dimensional problems. There are important

}ﬁ differences also, for example, error in stresses in two dimensions behave quite

{: differently from the errors in stresses in one dimension. Stress computations are

- discussed in the next section. Here we discuss the properties of varlous versions
N and present numerical results for our two dimensional model' problem. The results

:~ were obtained by means of the h-version program FEARS with feedback capabilities

e [14] and the p-version program FIESTA-2D [15]. FEARS has elements of polynomial

.ﬂ7 degree 1 only, the polynomial degree of elements in FIESTA-2D range from 1 to 8.

A S.1. H-Extension Based on Uniform Meshes

l\.

j:: The estimate for our model problem, defined in Section 2.2, is:

o

i -1

= 4

| lelER C(p)N - (5.1)
o

2}

_f Detailed theoretical analysis, comparable to the one dimensional case, is not
- available, The results of computations are shown in Table 5.1, where D represents
: the numerical value of C(p). The results indicate that the asymptotic estimate

p) (5.1) is of good quality.

- '\

A

:2 5.2, H-Extension with Feedback

A As 1in the one dimensional case, the sequence of optimally designed meshes leads
o to a rate of convergence independent of the singularity. The estimate for optimally
- designed meshes is:

< - -p/2

od lel C(p)N (5.2)
.

® Note that the exponent of N 1is p/2, not p as in the one dimensional case.

i: H-extension with properly utilized feedback (adaptive approach) should lead to
:: the same asymptotic rate of convergence as the optimally designed sequence of

- meshes. Table 5.2 shows the results obtained with FEARS.

. 5.3. P-Extension on Uniform Mesh

¢ .
’:f In this case the estimate is [3] [4]):
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o 1
'j::: el = C(e)N 1/2 te (5.3)
e ER .
3
U where € > 0, arbitrary. It is not known whether the term € can be removed.
-
1: Table 5.3 shows the results, obtained with FIESTA-2D using four square elements.
o
s
» 5.4 H-p Extension
o~ The estimate for h-p extensions based optimal mesh and on either optimally or
{: uni formly distributed p 1is:
N
:: 3
=

tel < ce ¥ , y > 0. (5.4)
N ER .
:& In the two dimensional case the optimal value of y 1is not known nor is it known
\:_ 3
‘:; whether the term N can be improved. The value of vy depends on the distribution

of Pe

:E 5.5. p-Extension Based on Properly Designed Mesh and Feedback Information
~,
%: As in the one dimensional case, the p—-extension performs much the same way as

the h-p extension when p 1is not two large and the mesh is properly designed. For
large p the p-version performs as if the mesh were uniform. An example is
presented in Table 5.4. The fact that the rate of convergence slows for high p 1is
an indication that the mesh should be refined. Slowing of the rate of convergence
can be detected which is the feedback information needed for increasing the number of
finite elements.

-
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o 5.6, Smooth Solutions
bV
7? When the solution 1s smooth, the p-version is very effective and, as in the one
o dimensional case, the convergence is exponential.
‘i: 6. STRESS 6OMPUTATIONS IN TWO DIMENSIONS
AR
=
Ly Stress approximations behave quite differently in two dimensions than in one
L ] dimension. In one dimension in our example the error depended only on the behavior
3: of the solution in the particular element {n question, i.e., the error was completely
ﬁ: localized. In two dimensions, on the other hand, the error is comprised of two
o parts: the local error and the error associated with all other elements. This
:Q second part is called pollution error.
The error in stresses depends to a large extent on how the stresses are
) computed. Indirect techniques are available which substantially reduce both the
= local and pollution error, as compared with the conventional (direct) wmethods of
ﬁ stress computations (7], [10], [13].
~ .
X
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6.1. Performance of h-Extensions Based on Nearly Optimal Meshes
Let us examine the stresses at point x; = x; = 0,25 in the model problem,
Solutions were obtained by means of the computer program FEARS., The point under
consideration 1s the vertex of four elements. Therefore, four different values can
be computed, using the derivatives of the four elements and the appropriate stress-
strain low. The relative errors, are shown in Table 6.1 for the three stress
components G,;, Gy9s 0o for the four adjacent elements. The error of the

average value (A) is also shown. It is seen that the error of the average value is
smaller than the error in most elements. This is a well known fact which is
generally utilized in stress computations.

The relative error in the same stress componets computed by means of an indirect
(postprocessing) technique [13]) is shown in Tab. 6.2,

The improvement is very substantial. The postprocessing technique ylelds stgess
values which are not sensitive to the meshes and the error is of the magnitud lelgp.

6.2. Performance of the p-Version

When the solution is smooth, the p-version performs well. When the solution is
not smooth and the elements are large, then the pollution error is generally large.
Satisfactory theoretical analysis is not available. It is known, however, that the
pollution error can be reduced very substantially by surrounding points of stress
singularity with one or more layers of elements.

The relative errors at point x; = 0.1, x, = 0.2 (which is located at element
boundaries) are shown in Tables 6.3a and 6.3b. The results presented in Table 6.3a
are strongly affected by pollution because the vertex of the neighboring element was
on the singular point. The results presented in Table 6.3b are much less affected by
pollution because an extra layer of elements were added so that the neighboring
element no longer had a vertex on the singular point. The local error is, of course,
the same in both cases. Table 6.3a and 6.3b illustrate the importance of proper mesh
design when the stresses are computed from the finite element solution directly. The
postprocessing method removes sensitivity to mesh design.
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MESH REFINEMENT, @ = .7

p=3 p=4
4
\t
o let % D h lel D | vesge® D lel X D
o 2 87.31 1.00 66.57 1.00 || s6.70 1.01 50.58 1.01
o 4 76.11 1.00 57.96 1.01 49.37 1.01 44.03 1.01
.- 8 66.26 1.00 “ 50.44 1.01 42,98 1.01 38.33 1.01
) 16 57.70 1.00 43.91 1.01 37.40 1.01 33.36 1.01
~ 32 50.23 1.00 38.24 1.01 32.57 1.00 29.05 1.01
N 64 43.72 1.00 33.29 1.01 28.35 1.00 " 25.29 1.01
X 128 38.08 1.00 28.98 1.00 24.68 1.01 22.01 1.01
3 256 33.13 1.01 25.22 1.01 21.48 1.00 19.16 1.01
Re “
LN
%
T TABLE 3.2a.- H-EXTENSION WITH ASYMPTOTICALLY OPTIMAL MESH, a = 0.7
5 p=1 (B =7.50) ]] p=2 (B =12.50)
S M
= tel 2 D lel % D
" 2 80.71 .314 70.65 .133
. 4 51.59 .402 39.94 .300
e 8 29.14 454 14.77 445
o 16 15.46 .482 4.365 .526
- 32 7.966 -496 1.168 .562
'.::-I
N TABLE 3.2b.- H-EXTENSION WITH ASYMPTOTICALLY OPTIMAL MESH, a = 1.1
LS
o p=1(8 =2.50) p = 2 (B=3.17) Il p = 3 (8=5.83) p = 4 (B=7.50)
Lol M
_' _leIERZ D lelERz - D lelmz D 'elERz D
g 2 | 58.91 1.19 || 21.99 .851 [ 15.10 .540 || 12.66 .275
~ 4 | 31.88 1.29 7.128 1.20 3.162 .905 || 1.982 .684
8 | 16.55 1.34 2.042 1.23 .4953 1.13 .1812 1.01
Avs 16 | 8.434 | 1.37 .5387 1.33 .688(-1) | 1.26 .134(-1) | 1.19
e 32 | 4.257 | 1.41 .1361 1.34 .904(-1) | 1.32 .908(-3) | 1.29
N 66 | 2.138 | 1.39 .345(-1) | 1.36 J115¢-2) | 1.35 .586(~4) | 1.33
,i;; 256 .5364 | 1.38 .217¢-2) | 1.38 .184(-4) | 1.38 " .240¢-6) | 1.38
ﬂ.'-‘ —
:ﬂ
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TABLE 3.3,.,- PERFORMANCE OF

AN OPTIMAL MESH (M = 2, a = 1.1)

p=1 p=2 p=3 p=é
IeIERZ lelERZ IelERZ lelERZ
57.42 17.31 8.213 4,762
TABLE 3.4.- MESH PARAMETERS (a = 0.7)
P B B xA(Opt) xA(min)
0 1 1
1 7.5 5 5.14(~12) 2.99(-8)
2 12.50 10 1.53(-19) 8.88(-16)
3 17.50 15 4.56(-27) 2.64(-23)
4 22.50 20 1.36(-36) 7.88(-31)
5 27.50 25 4.05(-42) 2.35(-38)

TABLE 3.5.— PENALTY FOR USING OVERREFINED MESH IN TERMS OF INCREASED VALUES

OF C (FIRST ROW) AND N (SECOND ROW)

a

o7 1.1 1.6 2.1

P .
1 1.00 1.97 3.40 4,81
1.00 1,97 3.40 4.81
2 1.00 4,69 14.73 29.97
1.00 2.17 3.84 5.47
3 1.00 12.08 69.09 202.90
1.00 2.29 4.10 5.88
4 1.00 32,19 337.15 1430.90
1.00 2.30 4.29 6.15




TABLE 3.6.-~ P-EXTENSIONS ON UNIFORM MESHES (a = .7)

M=1 M=2 M=3 M=y -W
P
lelERz D lelERZ D lelERZ D lelERz D
1 87.31 1.00 80.59 1.00 76.11 1.00
2 76.47 1.01 66.57 1.01 61.39 1.01 57.96 1.01
3 65.14 1.01 56.70 1.01 52.29 1.01 49.37 1.01
4 58.10 1.01 50.58 1.01 46.64 1.01 44.03 1.01
5 53.15 1.01 46.27 1.01 42.67 1.01 40.27 1.01
6 49.42 1.01 43.02 1.01 39.66 1.01 37.45 1.01
7 46.48 1.01 40.46 1.01 37.31 1.01 35.21 1.01
8 44,05 1.01 38.36 1.01 35.37 1.01. 33.39 1.01
9 42.02 1.01 36.58 1.01 33.74 1.01 31.85 1.01
10 40.29 1.01 35.09 1.01 32.34 1.01 “30.54 ) 1.01
11 38.80 1.01 33.76 1.01 31.15 1.01 29,40 1.01
TABLE 3.7 .- PERFORMANCE OF p-EXTENSION BASED ON
OPTIMAL p-DISTRIBUTION AND UNIFORM MESH
M =2)
a P P2 ] IeIERZ
o7 41 1 5.05
1.1 3 1 23.79
1.1 26 2 1.834
3.8.- PERFORMANCE OF h-p EXTENSION (a= 0.7, s = 0.4),
ASYMPTOTICALLY OPTIMAL MESH AND p-DISTRIBUTION
M N el X D " M N " tet D
2 3 54.18 2.62 8 21 7.031 2.82
3 5 38.68 2.66 9 25 4,998 2.77
4 7 28.02 2.61 10 30 3.523 2.82
S 10 19.82 2.70 11 35 2.492 2.80
6 13 14.10 2.69 12 41 1.754 2.89
7 17 9.942 2.82 20 100 .1071 2.94
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20 TABLE 3.9.~ PERFORMANCE OF THE h-p EXTENSION, ASYMPTOTICALLY
- OPTIMAL MESH AND UNIFORM p (a= .7)

M N P leIERZ D

2 1 1 74.36 1.50

3 5 2 38.68 1.70

4 7 2 28.02 1.50

5 14 3 16.17 1.57

8 31 4 5.037 1.46

10 49 5 2.262 1.43

15 104 7 .3376 1.25

TABLE 3.10a.- H-EXTENSION UTILIZING FEEDBACK, a = 0.7
p=1 | p =2
N IeIERZ D N IelERZ D
4 58.54 .570 9 43.93 .516
9 31.66 .617 19 22.01 1.03
20 14.48 .592 29 11.09 1.17
39 7.326 .571 39 5.719 1.07
85 3.327 .557 81 1.121 .886
101 2.788 .553 “ 101 -3689 .802
TABLE 3.10b.- H-EXTENSION UTILIZING FEEDBACK, a = l.l
p-1 p=2 " p =3
2 N | ez [ o N | rergz | o I' N tet_x | »
| 4 28.21 1.44 9 | 8.295 2.01 14 | 4.979 2.78
o 11 | 12.06 1.46 21 | 1.567 1.83 29 .6506 2.91
o 19 7.255 | 1.46 41 .4123 1.76 44 .1736 2.62
N 28 5.011 | 1.47 51 .2710 1.77 62 .05706 2.36
o 37 3.837 | 1.47 79 .1111 1.72 77 .02979 2.34
2 63 2.266 | 1.45 99 .07155 | 1.73 95 .01617 2.37
- 137 1.052 | 1.46 125 04411 | 1.69 137 .005006 | 2.17
' 255 .5673 | 1.46 251 .01093 | 1.68 227 .001095 | 2.15
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TABLE 3.12.,- PERFORMANCE OF THE p-EXTENSION

17

N

COLEN SO LY & IS

TABLE 3.11.- H-p EXTENSION UTILIZING

FEEDBACK, a = 0.7
N lel % D
4 58.54 2.795
9 31.66 2.88
25 10.47 3.69
39 4.235 3.52
60 1.548 3.64
120 .2933 3.51

£ =0, 0.1, 0.1

WITH M =

1,’a = 0.7 and

~‘..

I‘.l

E=0 l e = .01 £ =.1

P leIERZ D lelERZ D lelERZ D

2 76.47 1.01 57.75 .391 36.61 443
3 65.14 1.01 37.90 416 15.42 462
4 58.10 1.01 26.37 <432 6.922 473
5 53.15 1.01 18.57 443 3.224 .481
6 49,42 1.01 13.91 451 1.541 .486
7 46.47 1.01 10.38 458 .7578 .490
8 44,05 1.01 7.831 .463 -3677 494
9 42.01 1.01 5.961 .468 .1825 «495
10 40.29 1.01 4,571 471 .09136 +496
11 38.80 1.01 3.525 475 .04603 .498
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o . TABLE 5.1,- H-EXTENSION BASED ON
o UNIFORM MESHES (p = 1)
30
‘ N lelERz D
e 51 36.02 .96
o 167 27.07 .97
o 591 19.81 .97
\)
S

."k\

1..-'

&S
N TABLE S5.2.- H-EXTENSION WITH
x FEEDBACK (p = 1)
\:‘ N , le!ERZ D
o 67 32,91 2.03
101 26.38 2,66

143 21.35 2.56

e 221 16.79 2.50
el 301 13.61 2.36
oo 617 9.63 2.40
2
o TABLE 5.3.- PERFORMANCE OF THE p-EXTENSION
Z;:'_:; (UNIFORM MESH, 4 ELEMENTS)
"' P el % D
ATa 1 32.61 2.01
E37, 2 18.35 1.82
o 3 15.89 1.99
& 13.24 2.06
o 5 11.06 2.06
_‘.--", 6 9.47 2.07
e 7 - 8.27 2.08
256 8 7.37 2.08
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TABLE S5.4.- P-EXTENSION BASED ON PROPERLY
DESIGNED MESH

.f. led 2%
L P ) ER
= .1 31.96
o 2 12.36
A 3 6.197
4 4 3,277
s
"6 5 2.131
5!
2y 6 1.436
= 7 1.128
N 8 .8839
5N
f

[ Y
L N
A B A S

TABLE 6.1.- RELATIVE ERROR IN STRESS COMPONENTS AT POINT (0.25, 0.25)

o DIRECT COMPUTATION

o R R R

- A 10.99 7.57 11.16

o~ 1 4,79 2.32 35.86

S 221 2 12.21 2.01 .093

- 3 17.27 17.42 106.43

.ﬁ‘. 4 9.71 13001 71.109

J

:'.' A 4.09 501‘7 13042

. 1 1.46 2.68 22.96

617 2 4,41 .099 55.69

3 4,4] 13.43 3.88
4 6.07 11.74 28.85

TABLE 6.2.- RELATIVE ERROR IN THE STRESS COMPONENTS AT POINT
(0.25, 0.25) INDIRECT COMPUTATION

N elflz ) elzlzz elltzz
221 1.69 2.63 1.94
. 617 .56 .866 .81
‘-
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TABLE 6.3a.,~- RELATIVE ERROR IN STRESSES,

A VERTEX OF THE ADJACENT
ELEMENT LIES ON THE CRACK TIP

P ef1® e3a% ela?
1 7.903 34.17 18.18
2 6.222 14.09 11.20
3 1.014 10.53 3.254
4 5.249 9.652 4.844
5 2.864 5.411 1114
6 .6259 3.848 .8387
7 .6893 3.119 .9926
8 1.438 2.233 1.316

TABLE 6.3b.- RELATIVE ERROR IN STRESSES. THE ADJACENT ELEMENT IS
SEPARATED FROM THE CRACK TIP BY ONE LAYER OF ELEMENTS

Latalafals vt

P e%lz e%zz e%zz
1 13,57 33.108 17.39

2 2.124 6.976 .6688
3 1.091 3.843 3.620
4 .9997 1.923 1.852
5 .2653 .7836 «7166
6 .1702 .3928 .3503
7 .0784 .2123 .1529
8 .04005 .1256 .07431

bttt
Figure 2.1. Scheme of the cracked panel.
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